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Abstract

Conventional testing and diagnostic methods for infections like SARS-CoV-2 have limita-

tions for population health management and public policy. We hypothesize that daily

changes in autonomic activity, measured through off-the-shelf technologies together with

app-based cognitive assessments, may be used to forecast the onset of symptoms consis-

tent with a viral illness. We describe our strategy using an AI model that can predict, with

82% accuracy (negative predictive value 97%, specificity 83%, sensitivity 79%, precision

34%), the likelihood of developing symptoms consistent with a viral infection three days

before symptom onset. The model correctly predicts, almost all of the time (97%), individu-

als who will not develop viral-like illness symptoms in the next three days. Conversely, the

model correctly predicts as positive 34% of the time, individuals who will develop viral-like ill-

ness symptoms in the next three days. This model uses a conservative framework, warning

potentially pre-symptomatic individuals to socially isolate while minimizing warnings to indi-

viduals with a low likelihood of developing viral-like symptoms in the next three days. To our

knowledge, this is the first study using wearables and apps with machine learning to predict

the occurrence of viral illness-like symptoms. The demonstrated approach to forecasting

the onset of viral illness-like symptoms offers a novel, digital decision-making tool for public

health safety by potentially limiting viral transmission.

Introduction

Virus transmission from asymptomatic or pre-symptomatic individuals is a key factor contrib-

uting to the SARS-CoV-2 pandemic spread. High levels of SARS-CoV-2 virus have been

observed 48–72 hours before symptom onset. As high viral loads of SARS-CoV-2 may occur

before the onset of symptoms, strategies to control community COVID-19 spread that rely
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only on symptom-based detection are often unsuccessful. The development of novel

approaches to detect viral infection symptoms during this pre-symptomatic phase are critical

to reducing viral transmission and spread by facilitating appropriate early quarantine before

symptoms occur.

Once infected, the incubation period commonly ranges from 2–14 days (mean of 5.2 days),

and infectious transmission starts around 2.5 days and peaks at 0.7 days before the onset of

symptoms [1–4]. Of note, the loss of sense of smell and taste are more specific symptoms for

COVID-19 [3]. Even when symptomatic COVID-19 occurs, the symptoms and signs of

COVID-19 overlap with other viral illnesses such as influenza.

Today, 1 in 5 Americans use fitness tracking devices [5]. While these technologies can

inform population-level data sharing to detect disease state [6–9], to our knowledge, they have

not been used to forecast communicable infectious disease at the individual level. Outputs

from wearable technology including heart rate (HR), heart rate variability (HRV), respiration

rate (RR), temperature, blood oxygenation, sleep, and other physiological assessments are

increasingly being explored in studies of health and disease [10–12]. Moreover, a variety of

subject-reported symptoms captured on mobile apps transforms both surveillance and contact

tracing management strategies for COVID-19 [13–15].

Machine-learning algorithms are becoming more popular and useful when collecting large

amounts of disparate data to provide insight into otherwise complex relationships not easily

determined with routine statistical methods. Using a machine learning model informed by

self-reported symptoms, we demonstrate that the combination of physiological outputs from

wearable technology and brief cognitive assessments can predict symptoms and signs of a viral

infection three days before the onset of those symptoms. This forecasting model could be used

to enhance conventional infection-control strategies for COVID-19 and other viral infections.

Methods

Study design

The Rockefeller Neuroscience Institute (RNI) team initiated a study approved by the institu-

tional review board (IRB) at the West Virginia University Medical Center (#2003937069),

Vanderbilt University Medical Center (#200685), and Thomas Jefferson University

(#2004957109A001) to combine physiological and cognitive biometrics and self-reported

symptoms information from individuals at risk for exposure to COVID-19 and potential con-

tracture of a viral illness. We recruited study participants from each tertiary medical center by

approaching front-line health care workers receiving regional referrals for COVID-19 patients.

We asked each participant to 1) wear a smart ring device [16] with sensors that collect physio-

logical measures such as body temperature, sleep, activity, heart rate, respiratory rate, heart

rate variability; 2) use a custom mobile health app [17] to complete a brief symptoms diary [3],

social exposure to potentially infected contacts, and measures of physical, emotional, and cog-

nitive workload; (see S1 Table and S1 File) as well as the psychomotor vigilance cognitive task

(PVT) [18] to measure attention and fatigue twice a day. All data are collected, structured, and

organized into the RNI Cloud data lake for analysis. The RNI Cloud is a HIPAA compliant

data platform hosted in Amazon Web Services (AWS) that supports all the security and legal

requirements to protect the data’s privacy and integrity from the participants in the context of

multi-center clinical studies [19].

We utilized a machine learning approach that combines features through probabilistic rules

and provides a prediction. The training process consists of two steps. It combines subject

reported symptoms (labeling model) to inform a predictive framework (forecast model) that

uses physiological and cognitive signals to forecast suspicion of a viral illness (Fig 1). The
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dataset consisting of PVT and wearable data is split, 75% for training, and 25% reserved for

testing the model [20] (see S4 File). The labeling and forecasting models are created from a set

of rules combining one or more features. All rules are given a weight and combined to provide

a final decision [21–23] (see S2 Table).

Labeling model

We use a rule-based approach to create an AI model that labels an individual’s self-reported

symptoms as suspicious (or not) for presenting symptoms consistent with a viral illness. The

labeling model is created based on the expert knowledge manually translated into decision

rules (see below). The purpose of this model is to define if a person is being suspicious of an

infectious disease (below we just say suspicious) based on its self-reported symptoms. Rules are

based on those symptoms commonly present in a diagnosed viral-like condition and those

more specific for SARS-Cov-2 (e.g., loss of taste and smell) [2, 24, 25]. Resulting rules (Table 1)

assign, for instance, higher confidence on suspicion of a viral-illness for self-reported fever

with the persistence of symptoms for more than two consecutive days. In comparison, lower

confidence is assigned for stuffy nose and swollen eyes without fever (see S5 File). The rules

and weights in this model were establish from clinical subject matter experts. In particular, the

weights associated with the rules were chosen to minimize the labeling error assessed by medi-

cal experts. We also fine-tuned some rule weights by fitting the model to a small synthetic data

set, which contained typical symptom combinations. The actual calculations of the labeling

model’s output score is based on the machinery of the probabilistic logic, described in more

detail in the next paragraph.

Fig 1. Data Flow a) the labeling model, b) the forecast model. Each model takes as input three days of data (d, d-1, d-2).

https://doi.org/10.1371/journal.pone.0257997.g001
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Table 1. Labeling model rules.

Conditions that INCREASE suspicion of viral-like

symptoms

THEN Confidence Comments

Are_you_Positive_for_COVID_19 suspicious of viral-like

symptoms

high

Sense_of_Smell_Change suspicious of viral-like

symptoms

high

Fever suspicious of viral-like

symptoms

high

Cough suspicious of viral-like

symptoms

high

Shortness_of_Breath suspicious of viral-like

symptoms

high

Coughing_up_blood suspicious of viral-like

symptoms

medium

Nausea_or_vomiting suspicious of viral-like

symptoms

medium

Fatigue suspicious of viral-like

symptoms

medium Fatigue combined with respiratory symptoms make high

Sinus_Pain suspicious of viral-like

symptoms

medium

Sore_throat suspicious of viral-like

symptoms

medium

Chills suspicious of viral-like

symptoms

medium

Phlegm suspicious of viral-like

symptoms

low Make Low

Bone_or_joint_pain suspicious of viral-like

symptoms

low Make low

Diarrhea suspicious of viral-like

symptoms

low Make low if only one day

Stuffy_nose suspicious of viral-like

symptoms

low

Loss_of_appetite suspicious of viral-like

symptoms

low Loss of appetite with other symptoms increase to medium

(except fever, which is high)

Any persistent symptom for 2 or 3 days suspicious of viral-like

symptoms

low

Stuffy nose AND Swollen eyes AND Fever suspicious of viral-like

symptoms

high

Feel_Sick suspicious of viral-like

symptoms

low

Headache suspicious of viral-like

symptoms

low Headache with other symptoms increase to medium (except

fever make high)

Swollen_eyes suspicious of viral-like

symptoms

low

Any medium or low item with fever high

Conditions that DECREASE suspicion of viral-like

symptoms

THEN Confidence

Stuffy_nose AND Swollen_eyes AND NOT Fever NOT suspicious of viral-like

symptoms

low

Confidence levels

• High = Condition is strongly indicative of risk

• Medium = Condition is somewhat indicative of risk

• Low = Condition is slightly indicative of increase/decrease of risk

https://doi.org/10.1371/journal.pone.0257997.t001
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Forecasting model

The forecasting model was used to associate a label of suspicion for viral illness from the Label-

ing model to the features extracted from the user’s cognitive function assessment and physio-

logical signals. The physiological features include (1) single day and (2) rolling averages over

28 days of the heart rate, heart rate variability, respiration rate, activity, sleep latency, sleep

duration, composition (light, REM, deep), skin temperature, and sleep efficiency. Physiological

features to the exclusion of skin temperature are measured during the night to remove noise

due to varying daily activities. The daily cognitive task (PVT) is a sustained-attention, a reac-

tion-timed task that measures the speed with which subjects respond to a visual stimulus [18].

From this data set, the algorithm extracts rules using an information gain-based approach and

combines them in a predictive model using a probabilistic graphical network as follows.

The set of probabilistic rules comprises a Markov network. The joint distribution defined

by the Markov network can be written as P xð Þ ¼ 1

Z exp
P

j ojfjðxÞ
� �

where x = (x1,x2,. . .,xn,y)

denotes a set of n+1 binary variables, out of which the first n are input variables, and y is the

output variable. Here, fj(x)2{1,0} is a Boolean function corresponding to the rule, ω is a factor

associated with the corresponding rule, Z is the normalization constant. In the current imple-

mentation, the relation between the rule’s factor ω and the weight ψ used in the supplementary

materials is given by c ¼
expðoÞ

1þexpðoÞ. More details on the fundamentals of the probabilistic logic

can be found in [21–23]. With the joined distribution defined above, the model prediction s
for every observation vector r = (r1,r2,. . .,rn) is computed as the conditional probability of the

output variable y as s = P(y = 1|r).
If a training set is available, the model’s parameters can be determined by the calibration

process, which minimizes the prediction error. Suppose, for the i-th training example the

model’s prediction is si, and the observed (ground truth) output is yi. We define the cross-

entropy loss function as

L ¼ �
X

i

yi logðsiÞ þ ð1 � yiÞlogð1 � siÞ

The calibration process uses the steepest gradient descent to find a combination of rules

weights which minimizes the loss function. In our particular implementation we used Lim-

ited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS).

Our model was developed on Stratyfy’s Probabilistic Rule Engine, a commercial machine

learning platform [26] (see S3 File). In the application to our study, this general framework for

creating a rule-based predictive model was applied as follows: In a preprocessing step, the data

from the wearable device (e.g., heart rate, temperature, etc.) and the information for the mobile

app (e.g., symptoms, results of the PVT, etc.) were collected, checked for completeness, and

engineered variables were extracted. We found that, for our study, large gaps in the data had a

significant negative impact on the predictive power of the model and, therefore, our efforts

were concentrated on cases where most of the required information was actually available. We

identified a number of engineered variables (for instance, a ratio of heart rate to heart rate vari-

ability) which helped significantly improve the model’s predictive power. In order to be used

with probabilistic rules, continuous variables are discretized, and then discretized and categor-

ical variables are converted into binary variables by one-hot encoding. The labeling model

described above was used to construct the binary output variable, marking for each case days

of potential onset of a viral infection. At this point, the setup fit into the context of a standard

supervised learning problem: We needed to train a classifier to predict the onset of a disease

based on the information available before the actual onset. We opted for the rule-based system

described above for several reasons. A main reason was the transparency and interpretability
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of our model. In this case, our rule-based system produced models that were fairly small in

size (20–50 rules) and still highly accurate. We compared our approach to standard

approaches, for example gradient boosting, and found the rule-based approach most promis-

ing. Note that, in this study, the rule-based models were used in two ways. In the labelling

model, the rules, together with the confidences, were developed and specified by clinical

experts. To create the forecasting model, the rules were extracted from the available data via

rule mining. For this purpose, we used the Association Rule Mining algorithm [27], which is

based on the co-occurrences frequency analysis. After extracting the rules, the weights of the

rules were determined by the calibration process outlined above.

Validation of the model

Model performance was tested with K-fold cross-validation with in our case we perform four

rounds of validation (K = 4). One round of cross-validation involves portioning the dataset

into complementary subsets, performing the training on one subset and the validation on the

other. To reduce variability, multiple rounds of cross-validation are performed using different

partitions, and the validation results are combined (averaged) over the rounds to give an esti-

mate of the model’s predictive performance. The entire dataset is divided 4 times as 75% for

training and 25% for validating the model. The results are then average across the 4 runs of

training-validation. The model weights in the final model are obtained by using training data-

set of the model. We measure the model’s performances at various threshold settings. We also

used the area under the curve (AUC) of the receiver operating characteristic (ROC) curve as a

threshold-invariant performance measure. Additionally, we report the model’s learning per-

formances, i.e., how much data is required to reach the stability of the model. Learning is

achieved when adding more data does not significantly impact the performance of the model.

Results

We enrolled 867 subjects in the study between Apr 7th, 2020, and Aug 1st, 2020 (age ranged

from 20 to 76 years old) (Table 2). The data set includes 75,292 unique data points (median

number of days of data per participant is 90 days) (see S2 File). 33% (289) unique participants

were labeled (via the labeling model) as having symptoms consistent with a viral illness. The

forecasting model’s inclusion criteria require at least three days of continuous data with no

more than one feature missing due to compliance (Fig 1). Of the 767 participants that met the

criteria, 276 had missing data for the wearable and 376 for the cognitive assessment. The

remaining 115 participants were used to label the wearable and cognitive data as input for the

three-day forecasting model. Each day of data was adjudicated by the labeling model, which

predicted a 10% occurrence of symptoms consistent with a viral-like illness. The remaining

days were labeled as negative or non-suspicious of viral-like illness. From the training dataset,

Table 2. Study populations demographics.

Group WVU (N = 698) Vanderbilt (N = 97) TJU (N = 69) All (N = 867)

Sex–no (%)

Male 212 (30.3) 14 (14.4) 10 (14.5) 236 (27.2)

Female 252 (36.1) 40 (41.2) 21 (30.4) 313 (36.1)

Did Not Respond 234 (33.5) 43 (44.3) 38 (55.1) 318 (36.7)

Age (mean ± SD) 37.6 ± 11.6 37.8 ± 9.7 32.8 ± 10.0 37.6 ± 11.3

Diabetes Yes-No (%) 11 (1.6) 1 (1) 1 (1.4) 13 (1.5)

Hypertension Yes-No (%) 31 (4.4) 7 (7.2) 2 (2.9) 40 (4.6)

https://doi.org/10.1371/journal.pone.0257997.t002
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the algorithm identified 45 probabilistic rules. These are combined to form the forecasting

model (Table 3). The rules contributing to the high probability of developing symptoms within

three days are related to low HRV, slower response time to cognitive testing, longer latency to

get asleep combined with an increased REM sleep time, and an increased HR. The rules that

contribute to a lower probability of developing symptoms are related to lower HR, increased

HRV, increased sleep quality, and faster response rate to cognitive testing. Fig 2 provides the

model performance as a function of the threshold. Fig 3 illustrates that the model reaches a pla-

teau after about 1500 samples, and that much accuracy cannot be gained by adding more sam-

ples. Table 4 reports the precision, recall, and accuracy metrics obtained with a threshold = 0.1

for models with and without cognitive assessment data. The threshold was selected to maxi-

mize the balance between precision and recall. The overall accuracy of the model is 82%. The

recall positive defined as the true positives (TP) over the total number of positive values (TP/

(TP+FN)) is 79% (no PVT:67%). The accuracy of calling negatives (recall negative) defined as

the true negatives (TN) over the total amount of negative values (TN/(TN+FP)) is 83% (no

PVT:84%). AUC is 89% (no PVT: 83%).

Discussion

In this study, we measure daily changes in autonomic activity using a wearable device and cog-

nitive assessments via a mobile app. Using machine-learning analytics, we then forecast the

onset of symptoms consistent with a viral illness. Specifically, we describe our strategy of using

an AI model in conjunction with a non-invasive and readily available technology, which pre-

dicts the likelihood of developing symptoms consistent with a viral infection three days before

symptom onset with an accuracy of 82%. The model has a false positive rate of 21% (meaning

the system would label a non-infected participant as suspicious) and a false-negative of 17%

(meaning the system would not detect a suspicious participant). Due to the occurrence of dis-

ease in the population, our dataset is unbalanced with more negatives than positives to a ratio

of about 4 to 1. The model would detect 79% of individuals who will develop symptoms (i.e.,

sensitivity) and correctly predicts, almost all of the time (97%, negative predictive value), indi-

viduals who will not develop viral-like illness symptoms in the next three days. Conversely, the

model precision is 34%. That precision is defined as the ratio of true positives (TP) over posi-

tives (P). In other words, if the model flags someone to develop viral-like symptoms in the

next three days, the model is correct 34% of the time. Finally, the very little difference in AUCs

between each fold suggest that the model is consistently generalizable.

The current model parameters were chosen to provide a conservative framework that

warns potentially pre-symptomatic individuals to socially isolate while minimizing warnings

to individuals with a low likelihood of developing viral-like symptoms in the next three days.

The individuals predicted to be positive (true or false positives) would undergo additional

screening and precautions. This framework can be applied as a digital decision-making man-

agement tool for public health safety in addition to conventional infection-control strategies.

Other investigators have confirmed the relationship between autonomic activity and the

inflammatory response [28–30]. This study suggests a time-dependent relationship between

autonomic and cognitive activity and the forecasting of symptoms consistent with a viral ill-

ness. We observed consistent changes in the autonomic nervous system function preceding

the onset of symptoms. Specifically, differences were observed in HRV, HR, and sleep indices

three days before symptom onset. Importantly, this period corresponds to the pre-symptom-

atic phase of some viral illness such as COVID-19 that is estimated to be 2.5 days [1–4]. In

addition to the autonomic changes measured by the wearables, our analyses demonstrate the
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Table 3. Algorithm-derived rules list of 45 rules extracted by the algorithm and used in the model with their relative weights.

IF lbl_score> = 0.5 THEN suspicious 0.97

IF lbl_score in [0.2.. 0.5) THEN suspicious 0.95

IF (HRV in (30.. 43] AND lbl_score < 0.2) THEN suspicious 0.91

IF (Breath_Average < = 14.5 AND MedianResponseTime_AM > 365) THEN suspicious 0.90

IF (Age in (27.. 33] AND lbl_score < 0.2) THEN suspicious 0.87

IF (Sex = Female AND lbl_score > = 0.5) THEN suspicious 0.84

IF (Onset_Latency > 0.0417 AND REM > 1.62) THEN suspicious 0.83

IF (Age in (27.. 33] AND lbl_score_t1 < 0.2) THEN suspicious 0.78

IF (Breath_Average < = 14.5 AND HRV > 43) THEN suspicious 0.77

IF (HR_delta < = -1.47 AND Light < = 3.42) THEN suspicious 0.75

IF (Age > 46 AND Sex = Female) THEN suspicious 0.75

IF (MedianResponseTime_AM in (322.. 365] AND lbl_score < 0.2) THEN suspicious 0.73

IF (Onset_Latency in (0.00333.. 0.0417] AND Sleep_Score < = 72) THEN suspicious 0.73

IF (Onset_Latency in (0.00333.. 0.0417] AND HRV_delta_t1 < = -4.11) THEN suspicious 0.73

IF (AM_Readiness < = 5.28 AND Sex = Female) THEN suspicious 0.72

IF (HR_delta in (-1.47.. 1.38] AND Sex = Male) THEN suspicious 0.70

IF (E1 < = 0.274 AND HRV_base in (30.1.. 43.5]) THEN suspicious 0.69

IF (MedianResponseTime_PM in (326.. 375] AND Sex = Male) THEN suspicious 0.64

IF (Onset_Latency in (0.00333.. 0.0417] AND lbl_score in [0.2.. 0.5)) THEN suspicious 0.58

IF True THEN suspicious 0.11

IF (HR_Lowest in (55.. 61] AND TLX_Stress_Score in (88.. 163]) THEN not suspicious 0.87

IF (Age in (27.. 33] AND Sex = Female) THEN not suspicious 0.86

IF (Light > 4.31 AND MedianResponseTime_PM > 375) THEN not suspicious 0.86

IF (HRV in (30.. 43] AND lbl_score_t1 < 0.2) THEN not suspicious 0.84

IF (HR_delta_t1 in (-1.45.. 1.35] AND REM > 1.62) THEN not suspicious 0.83

IF (Sleep_Score > 82 AND HRV_delta > 2) THEN not suspicious 0.83

IF (MedianResponseTime_PM in (326.. 375] AND Sleep_Score < = 72) THEN not suspicious 0.81

IF (MedianResponseTime_AM in (322.. 365] AND lbl_score_t1 < 0.2) THEN not suspicious 0.80

IF (E4_t2 in (1.44.. 2.32] AND Score_Efficiency in (83.. 96]) THEN not suspicious 0.79

IF (E1_t2 < = 0.27 AND Light < = 3.42) THEN not suspicious 0.78

IF (HR_Lowest > 61 AND HRV in (30.. 43]) THEN not suspicious 0.77

IF (E5_t1 in (-0.753.. 0.724] AND HR < = 62) THEN not suspicious 0.77

IF (E1 < = 0.274 AND HR_delta in (-1.47.. 1.38]) THEN not suspicious 0.77

IF (Onset_Latency > 0.0417 AND HRV_delta_t1 > 1.99) THEN not suspicious 0.76

IF (E5 > 0.758 AND HRV_delta_t1 < = -4.11) THEN not suspicious 0.75

IF (Breath_Average < = 14.5 AND Sex = Female) THEN not suspicious 0.74

IF (E5_t2 in (-0.74.. 0.779] AND Temperature_Delta in (-0.1.. 0.08]) THEN not suspicious 0.74

IF (HR_delta_t2 in (-1.45.. 1.43] AND Temperature < = 97.6) THEN not suspicious 0.73

IF (Duration_Integer_hr< = 5.8 AND E1 < = 0.274) THEN not suspicious 0.73

IF (E4_t1 in (1.45.. 2.3] AND E5_t1 in (-0.753.. 0.724]) THEN not suspicious 0.71

IF (TLX_Stress_Score> 163 AND HRV in (30.. 43]) THEN not suspicious 0.68

IF (Light in (3.42.. 4.31] AND Sex = Male) THEN not suspicious 0.67

IF (Age in (33.. 37.5] AND TLX_Stress_Score < = 88) THEN not suspicious 0.66

IF (Sex = Male AND TLX_Stress_Score > 163) THEN not suspicious 0.63

IF Age in (27.. 33] THEN not suspicious 0.61

Rules are aggregated to forecast suspicion of a viral disease in a participant.

https://doi.org/10.1371/journal.pone.0257997.t003
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additional value of cognitive assessments (PVT) to predict symptoms consistent with a viral

illness.

There are several limitations to this study. First, we did not diagnose infection nor measure

infection markers in each individual. Instead, we relied on self-reported symptoms known to

be associated with the occurrence of a viral infection. Without definitive diagnostics, we can-

not confirm the presence of viral infection among persons who self-report symptoms. In the

next phase of the study, we plan to test specific viruses (e.g., influenza and SARS CoV-2). The

Fig 2. ROC (False Positive Rate vs True Positive Rate) and Precision/recall curves for the forecasting model with (A, C) and without cognitive assessment (B, D).

https://doi.org/10.1371/journal.pone.0257997.g002
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participants in this study are limited to front-line health care workers. Our model would bene-

fit from being extended to other populations. Finally, participant compliance to consistently

use their wearable and the app remains a challenge. Non-compliance among our participants

reduced the usable data set. We plan on developing additional models to impute the data in an

efficient way in order to extend the usability of the forecasting model. While we have demon-

strated that the dataset is sufficient to reach this model’s predictive stability, additional data

will provide further insights and reinforce the conclusions.

Viral infections have physical, cognitive, behavioral, and environmental influences and

stressors that impact infection risk [31, 32]. To our knowledge, this is the first study using

wearables and apps with machine learning to predict symptoms consistent with viral infection

three days before their onset. The demonstrated approach to forecasting the onset of viral ill-

ness-like symptoms offers a novel digital decision-making tool for public health safety by

potentially limiting viral transmission.

Fig 3. Model performance (learning and stability). The shade colors represent the variance of results created by the K-Fold(4) validation.

https://doi.org/10.1371/journal.pone.0257997.g003
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